How homogeneous are the trehalose, maltose, and sucrose water solutions? An insight from molecular dynamics simulations.

نویسندگان

  • A Lerbret
  • P Bordat
  • F Affouard
  • M Descamps
  • F Migliardo
چکیده

The structural properties resulting from the reciprocal influence between water and three well-known homologous disaccharides, namely, trehalose, maltose, and sucrose, in aqueous solutions have been investigated in the 4-66 wt % concentration range by means of molecular dynamics computer simulations. Hydration numbers clearly show that trehalose binds to a larger number of water molecules than do maltose or sucrose, thus affecting the water structure to a deeper extent. Two-dimensional radial distribution functions of trehalose solutions definitely reveal that water is preferentially localized at the hydration sites found in the trehalose dihydrate crystal, this tendency being enhanced when increasing trehalose concentration. Over a rather wide concentration range (4-49 wt %), the fluctuations of the radius of gyration and of the glycosidic dihedral angles of trehalose indicate a higher flexibility with respect to maltose and sucrose. At sugar concentrations between 33 and 66 wt %, the mean sugar cluster size and the number of sugar-sugar hydrogen bonds formed within sugar clusters reveal that trehalose is able to form larger clusters than sucrose but smaller than maltose. These features suggest that trehalose-water mixtures would be more homogeneous than the two others, thus reducing both desiccation stresses and ice formation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biopreservative Capabilities of Disaccharides on Proteins : A Study by Molecular Dynamics Simulations

A comparative investigation of lysozyme in trehalose, sucrose and maltose aqueous solutions has been performed using Molecular Dynamics simulations. The vibrational properties in the low frequency spectral range [0 350] cm^^ were mainly analyzed. This study confirms that the hydrogen bond (HB) network of water is highly dependent on the presence of sugars and contributes to the stabilization of...

متن کامل

How do trehalose, maltose, and sucrose influence some structural and dynamical properties of lysozyme? Insight from molecular dynamics simulations.

The influence of three well-known disaccharides, namely, trehalose, maltose, and sucrose, on some structural and dynamical properties of lysozyme has been investigated by means of molecular dynamics computer simulations in the 37-60 wt % concentration range. The effects of sugars on the protein conformation are found to be relatively weak, in agreement with the preferential hydration of lysozym...

متن کامل

Glass transition behavior of ternary disaccharide-ethylene glycol-water solutions

Glass transition behavior of ternary disaccharide-ethylene glycol-water solutions, in reference to that of the binary combinations, has been investigated towards a better understanding of their cryoprotective ability. In water-deficient solutions, the disaccharides, including trehalose, sucrose and maltose, can associate with more than 100 ethylene glycol molecules to form amorphous complex, on...

متن کامل

A computational study of hydration, solution structure, and dynamics in dilute carbohydrate solutions.

We report results from a molecular simulation study of the structure and dynamics of water near single carbohydrate molecules (glucose, trehalose, and sucrose) at 0 and 30 degrees C. The presence of a carbohydrate molecule has a number of significant effects on the microscopic water structure and dynamics. All three carbohydrates disrupt the tetrahedral arrangement of proximal water molecules a...

متن کامل

Analysis of Chlorine Gas Incident Simulation and Dispersion Within a Complex and Populated Urban Area Via Computation Fluid Dynamics

In some instances, it is inevitable that large amounts of potentially hazardous chemicals like chlorine gas are stored and used in facilities in densely populated areas. In such cases, all safety issues must be carefully considered. To reach this goal, it is important to have accurate information concerning chlorine gas behaviors and how it is dispersed in dense urban areas. Furthermore, mainta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The journal of physical chemistry. B

دوره 109 21  شماره 

صفحات  -

تاریخ انتشار 2005